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Abstract. The algebra of gamete multiplication corresponding to a population 
of autotetraploids which differ at n loci, each with an arbitrary number of 
alleles, is proven to be a genetic algebra, irrespective of the mode of segregation 
of the n loci. 
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1. Introduction 

The purpose of this paper is to show that the algebra of gamete multiplication 
corresponding to a population of autotetraploid individuals which differ at n loci, 
each with an arbitrary number of alleles, is a genetic algebra. The result follows 
from an assertion, proved in Section 4, that certain linear combinations of the 
gamete distributions produced from different tetraploid genotypes vanish identi- 
cally, together with a characterization of genetic algebras given by Gonshor (1973). 
The argument is valid whatever the mode of segregation of the n loci. 

The gamete algebras for polyploid organisms have received extensive in- 
vestigation. Gonshor (1965) and Holgate (1966) contain early contributions. More 
recently, W6rz-Busekros (1978) and Heuch (1978) have exhibited canonical bases 
for the genetic algebras connected with polyploid inheritance for arbitrary modes of 
segregation. All these results treat behavior at a single locus only. For two loci, 
Bennett (1954) and Crow (1954) obtained recursion relations for gamete frequen- 
cies without using genetic algebras. 

2. Genetic Algebras 

Nonassociative algebras were first introduced into genetics by Etherington (1939), 
and are the subject of a growing literature. They arise in the following way. 

We characterize the mechanism of inheritance of an organism by a set 
{G1, G2 . . . . .  GN} of distinguishable gametes, another set {Zij: i,j = 1 . . . . .  N} of 
zygote genotypes in which Zij is the genotype obtained by the fusion of gametes G~ 
and G j, and by a law of gamete formationfwhich gives for each Zzj the probability 
distribution of its gametic output. 
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An "algebra" for gamete multiplication arises when the gamete distribution 
f (Z i j )  is used to define a multiplication of the initial gametes Gi and G j, so that 

N 

Gi x Gj = f (Z i j )  = ~ PijkGk (2.1) 
k = l  

in which Pijk is the proportion of Gk gametes produced by zygote Zz s. The 
multiplication of gametes can be extended in the obvious way to the entire vector 
space (5 of formal real or complex linear combinations of gametes by setting 

giGi x gjGj = Eg ig j f (Z i j )  
i j i,j 

= g i g j P i j k  Gk  (2.2) 
k= 1 i,j / 

This multiplication of elements of (5 distributes over addition, is commutative, but 
is generally not associative. 

This algebra of gamete multiplication is of interest primarily in the context of an 
infinite randomly mating population of individuals whose mechanism of in- 
heritance is described by Eq. (2.1). If 

0 ~~ ~ gl~ 
i=1 

represents in (5 the derived gamete distribution of the initial population, then the 
derived gamete distributions 0 ~ 1), 0~2) . . .  of the population after 1,2 . . . .  generations 
of random mating are represented in (5 by the sequence of successive squares of 0~o): 

0~1~ = 0~o) • 0~o~ 

0 ~2~ = 0 ~1~ x 0 ~1~ 

0(r) = 0 ( r -  1) X 0 ( r -  1) (2.3) 

From 0tr) we can compute the genotype distribution of the population after r 
generations as 

E (r)a(r)z . .  v i  ~ j  U 
i,j 

An algebra (5 of gamete multiplication is a genetic algebra if a basis 
{7o,7~,...,VN-1} can be found for it with respect to which the multiplication 
satisfies 

~)i X 7 j  = E Cij k~)k 
k 

CO0 0 ~ 1 

COj k = 0 if k < j 

Cijk = 0 if i , j  > 0 and k <~ max(i,j) 

Such a basis is termed a canonical basis of (5. 

(2.4) 
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Equation (2.3), expressed in terms of the gamete frequencies gl '), is a quadratic 
recurrence relation. If, however, (5 is a genetic algebra, study of the recurrence 
relation is greatly simplified, for it is possible to find a vector of polynomial 
functions of the gene frequencies 

~ )  = P l lg] ~) . . . . .  g~ll . . . . .  P MIg] ~1 . . . . .  g~'l 

which obeys a linear recurrence relation (Holgate, 1967). 
Notice from Eq. (2.4) that the subspace ff = span(71 . . . .  ,7N- 1) of (5 is closed 

under multiplication by any element of (5, and thus in algebraic terms is an ideal of 
(5. It is not difficult to see that ~ can always be taken to be the subspace of contrasts 
(as the term is used in statistics) of gamete types. Examining Eq. (2.2), if either 
factor on the left is a contrast (~  g~ = 0 or ~ 9'i = 0), then so is the resultant on the 
right, since 

"" [,j k 

It also follows from Eq. (2.4) that a genetic product containing sufficiently many 
(n or more) factors from ~ vanishes however associated. Thus if (5 is genetic, the 
ideal of contrasts is algebraically nilpotent. A converse due to Gonshor (1973), 
characterizing an algebra (5 as genetic in terms of the vanishing of products 
containing enough factors from ~, will be applied in Section 4. 

3. Single Locus Case 

We introduce the algebras of gamete multiplication for autotetraploid organisms 
by considering first the process of gamete formation at a single locus, A. A typical 
genotype is A1AzA3A4.  Following Fisher (1947), let cr be the probability that the 
two alleles of the (diploid) gamete derive from the same chromosome of the zygote. 
Then possible gametes AiAj  (i # j )  are produced in proportions (1 - c0/6, while 
gametes AfAi are produced in proportions cr each. We shall write this 

f ( A  1A2A3A4) - (1 - ~)(AIA2 6 + AIA3  + A1A,~ + AzA3 + A2A4 + A3A4) 

0r 
+ ~(A1A1 + A2A2 + A3A3 + A4A4) (3.1) 

The parameter cr specifies the mode of segregation at locus A. ~ = 0 corresponds to 
chromosome segregation; e = ~ to chromatid segregation. 

The function f i n  Eq. (3.1), which gives the law of gamete formation for this one- 
locus system, has for its domain the set of all possible genotypes, and for its range 
the space of probability distributions over (or formal linear combinations of) 
gamete types. By extensionfis a linear function from the vector space of all formal 
linear combinations of (tetraploid) zygotes to that of formal linear combinations of 
(diploid) gametes. 
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Consider the set of formal linear combinations of genotypes which may be 
represented in "factorized" form as 

A 1 A ~ A 1 A ~  

A ~ A 1 A I ( A I  - A i )  

A 1 A I ( A 1  - A i ) ( A 1  - A j )  

A a ( A 1  --  A~)(A1 - A j ) ( A ,  - Ak )  

( A ;  - A , ) ( A 1  - A j ) ( A 1  - Ak)(Al - Al) (3.2) 

where the possible alleles for locus A are A b A 2  . . . . .  Am.  Each expression in Eq. 
(3.2) becomes, upon purely formal expansion, a linear combination of genotypes 
with coefficients _%+ 1. The combinations will be linearly independent, and so are a 
basis of the space of zygote genotypes, if we restrict the subscripts i, j, k, and l to 
satisfy 2 ~< i ~ j ~ <  k ~< l~< m. 

Using Eq. (3.1), one can verify by straightforward calculation that the 
representation o f f  with respect to this basis is 

f [ _ A ~ A ~ A I A 1 ]  = A 1 A 1  (3.3a) 

f [ A 1 A ~ A I ( A 1  - Ai)] = f ( A 1 A I A I A 1 )  - f ( A ~ A ~ A 1 A i )  

- ~ A I ( A ~  - A , )  - ~ ( A ~  - Ai)(At - A 0  (3.3b) 

( 1  - ~) 
f [ A 1 A I ( A ~  - A i ) ( A 1  - Aj)] - 6 ( A ,  - A O ( A ~  - A j )  (3.3c) 

f [ A I ( A ~  - A O ( A ~  - A j ) ( A ~  - Ak)] = 0 (3.3d) 

f [ ( A ~  - A O ( A ,  - A j ) ( A ,  - A k ) ( A I  - A,)] = 0 (3.3e) 

It can be seen that basis elements having the form of the last two lines of Eq. (3..2) are 
in the kernel of  the function f. 

Equation (3.3) implies that the algebra for gamete multiplication of a one-locus 
autotetraploid organism is a genetic algebra provided no mutation or selection 
effects occur. A canonical basis is obtained by setting Yo = A ~ A ~ ,  7~= 
A I ( A a  - A~+,), i = 1 , . . . ,  m - 1, and 7m,'. ", 7S (where N = m ( m  + 1)/2 is the total 
number of possible gamete types) equal to the basis elements ( A t  - A , ) ( A ~  - A i )  

taken in any order. The genetic product of two basis elements y~ x 7j is in this case 
simply f applied to their juxtaposition. 

4. Multilocus Case 

We now suppose for an autotetraploid organism that n loci A, B, C . . . .  are in 
question, each having two or more possible alleles. In order to show that the 
corresponding gametic algebra is genetic, we derive formulas analogous to those of  
Eq. (3.3), relating to the segregation behavior at one locus, A ,  given that at the 
others. A combinatorial argument then shows that the multilocus algebra satisfies 
Gonshor's (1973) characterization of genetic algebras. This approach proves that 
the algebra is genetic without actually exhibiting a canonical basis for it. 
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Let the possible alleles for locus A be denoted Ai or ai. Also let W, X, Y, Z, U and 
V represent combinations of  alleles from loci B, C . . . .  , each specifying the makeup 
of a chromosome for the n - 1 loci other than A. 

We call a unit contrast the difference between two gamete types which differ only 
in the substitution of one allele for another in one chromosome. A typical unit 
contrast for locus A, represented also in "factorized" form, is 

A1W. A 2 X -  A1W. a2X = A1W. (A2 - a2)X 

Unit contrasts for other loci B, C . . . .  are defined similarly. 
The following lemma permits us to restrict attention to unit contrasts in 

evaluating genetic products involving contrasts. 

L e m m a  4.1. For the gametic algebra (5 of an autotetraploid organism, the ideal of 
contrasts ~ is spanned by unit contrasts. 

Proof. It is clear that ff is spanned by all formal differences between pairs of gamete 
types. Any one gamete type, however, can be transformed into any other by at most 
2n one-allele substitutions, two for each locus. Hence the difference between two 
gamete types is the sum of at most 2n unit contrasts. 

A series of  three propositions give the results of  certain products of unit 
contrasts. Suppose that, ignoring A, the mode of gamete formation of loci B, C . . . .  
can be expressed as 

f ( W .  X-  Y . Z )  = ~p(U,  V)U. V (4.1) 
U ,V  

where the sum is over unordered pairs of chromosomes U and V, and p(U, V) is the 
probability that the gamete U-  V is produced from a zygote of  genotype 
W. X .  Y.  Z. p(U, V) also depends on W, X, Y, and Z, but we ha~e suppressed this 
dependence in the notation. The dots in W '  X .  Y. Z and in U - V serve to separate 
the contents of  homologous chromosomes. 

A typical zygote, described at all n loci, is AIW" A2 X-" A3Y" A4Z. For 
notational convenience, the subscripts i = 1,2, 3, 4 serve to distinguish not only 
between possibly different alleles at locus A, but also to indicate place. The 
distribution of gametes produced from this zygote may be written 

4 

f ( A ~ W ' A z X ' A 3 Y ' A 4 Z ) =  ~ ~ p(U,V; i , j )A iU.AjV (4.2) 
U ,V  i , j  = 1 

where p(U, V; i,j) is the probability that a gamete produced from zygote A ~ W" 
A 2 X ' A 3 Y ' A 4 Z  will be of  type AiU'AjV.  Notice that 

4 

p(U, V; i,j) = p(U, V) 
i , j -  1 

(1 - c~)/12 i f i : ~ j  
p(U, V; i,j) = c~/4 if i = j  

U ,V  

where e is as in Eq. (3.1). (1 - ~)/12 rather than (1 - c~)/6 appears above since the 
gamete types AiU �9 Aj Vand AjU �9 Ai V, while identical in genetic content, represent 
different arrangements of the genetic material and so receive separate accounting. 
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The product in N of a gamete type A1 W" A2)t" and a unit contrast in locus A, 
A3 Y" (A4 - a4)Z, is given by the gamete distribution 

f [A1W" AzX" A3Y ' (A4  - a4)Z] = f ( A I W "  AzX" A3Y" A4Z) 

- f ( A I W "  AzX" A3Y" a4Z) 

This is the difference between two expressions of the form Eq. (4.2), identical but 
that where A 4 appears in the first, a4 appears in the second. In the difference, all 
terms AiU" AjV in Eq. (4.2) cancel except those for which i o r j  = 4. Hence 

f [ A 1 W .  A2X" A3Y ' (A4  - a4)Z ] = 2 f 2 p(U, V; i, 4)AIU'(A4 - a4)V 
U,V I.I:~4 

+ ~, p(U, V;4, i)(A4 - a4)U'AIV 

V; 4, 4)[A4U" A 4 V -  a 4 U  " agV]t + p( U, 

Expanding the last term using the identity 

A4U" A 4 V -  agU" a4V= A4U" (A4 - a4)V+ (A4 - a4)U" A , V  

- (A4 - a,)U. (A4 - a4)V 

and rearranging the final result we obtain an analogue of Eq. (3.3b). We record it as 

Proposition 4.2. 

f [ A ~ W .  A z X ' A 3 Y "  (A4 - a4)Z] = ~ p(U, V;i,4)AiU.(A4 - a4)V 
U,V i 

4 

+ ~ p(U, V;4, i)(A4 - a4)U'AIV 
i = 1  

"h 

-p (U,  V; 4, 4)(A4 - a4)U" (A4 - a4)V I 

(4.3) 

The product either of two unit contrasts in locus A or of a gamete type and the 
linear combination (A3 - a3)Y" (A4 - a4)Z of four gamete types, is 

f (A1W" AzX ' (A3  - a3)Y'(A4 - a4)Z) 

=f (AaW" AzX" A3Y" (A4 - a4)Z) 

- f(A~ W" AzX" a3Y" (A4 - a4)Z) (4.4) 

Upon substituting Eq. (4.3) into Eq. (4.4), we obtain after cancellation of identical 
terms and formal factorization 

Proposition 4.3. 

f [A1W" AzX" (A3 - a3)Y" (A4 - a4)Z-] 

= Z {p(U, V;3,4)[(A3 - a3)U'(A,, - a4)V] 
U,V 

+ p(U, V; 4, 3)[(A4 - a4)U" (A3 - -  a3)V]} (4.5) 
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By further subtracting Eq. (4.5) (which contains no subscript i = 1 or 2) from 
itself, we obtain 

Proposition 4.4. For any mode of  gamete formation in an autotetraploid organism 
described by Eq. (4.2) 

f [ A I  W" (A2 - az)X" (A3 - a3)Y" (A4 - a4)Z] = 0 

f [ (A1 - a l ) W ' ( A 2  - a2 )X ' (A3  - a3)Y" (A4 - a4)Z] = 0 (4.6) 

That is to say, the gamete distributions derived from these linear combinations of  
zygote genotypes vanish identically. 

Proposition 4.2 to 4.4 give us expressions for all genetic products of  elements of  
t5 having the forms 

A 1 W .  AzX 

A 1 W "  (A 2 - az)X 

(A1 - a l )W"  A2X 

(Ax - a l )W"  (A2 - a2)X 

The noteworthy feature is that whenever the difference appears in either factor, it 
also appears in each term of the product. Also if the total number of(Ai - al) in the 
factors is 3 or 4, the result vanishes. The following argument deduces that (5 is thus a 
genetic algebra. 

Let ~s) be the set of  linear combinations of right products ((xl x xz) x �9 �9 .) 
x xm of elements of  15 having at least s factors from E. Theorem 3.1, part  2, of  
Gonshor  (1973) states that 15 is genetic if and only if ~(sl = 0 for some s. We show 
that the n locus autotetraploid algebra satisfies this condition with s = 2n + 1. 

Theorem 4.5. The algebra of  gamete multiplication for an autotetraploid organism 
with n loci is a genetic algebra for any mode o f  segregation of  the loci. 

Proof. Consider the right gametic product 

((x~ x x2) x . . . )  x xm (4.7) 

o f m  elements x~ of 15 of which 2n + 1 or more are in ft. Write each xz contained in 
as a linear combination of unit contrasts. Also, write each xz not in ~ as a linear 
combination of gamete types. Using distributivity, we can expand Eq. (4.7) as a 
linear combination of right products 

((Yl • Y2) x - ' ' )  • Ym (4.8) 

where Yi is a unit contrast ifxi is in ff and a gamete type if not. Thus, at least 2n + 1 
factors of  Eq. (4.8) are unit contrasts. 

It suffices to show that Eq. (4.8) vanishes. Since there are only n loci, at least 
three in any set of2n + 1 or more unit contrasts must be unit contrasts for some one 
locus. Supposing it to be A, we have that at least three y~ are unit contrasts in locus 
A. Again using distributivity, Eq. (4.8) can be further expanded in terms of right 
products o fm factors zl each of the form A ~ W- A2_Jfor A ~ W. (A2 - a2)X, where at 
least three factors are of  the latter type. (Note that for these three, zi = yi). 
Evaluating these terms using Propositions 4.2, 4.3, and4.4, the expression vanishes. 
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